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We describe a hierarchy of formal expansions that represent the Fourier transform of
a solution of the Boltzmann equation. The constructed approximations are based on
the family of weighted Taylor expansions. The first two representations correspond to
the Maxwellian and to the Gaussian expansions. The third representation has a weight
that generalizes the Gaussian and it depends on the first 13 moments of the Boltzmann
density f. It can be shown that this weight is Galilean invariant and it is close to the
Gaussian, providing that the heat fluxes are not too large. The 13 moment weight yields
a revised form of Grad’s 13 moment expansion for the Boltzmann equation. In search
for the entropy dissipation inequality, we also examine the relation between Levermore’s
14 moment density and Grad’s 13 moment expansion. First, we show that the coefficients
of the Godunov potential are described by a system of partial differential equations,
with coefficients that depend on the Fourier transform of the Levermore’s density f�
itself. Then, we argue that the same Taylor expansion exploited in the Grad’s scheme,
can be used to approximate Levermore’s 14 moment density. We also show that the
weighted Taylor expansions are related to a formal solution of the Hamburger problem.

KEY WORDS: Boltzmann equation, Grad moment equations, weighted Taylor
expansion, Godunov potential, Hamburger moment problem

INTRODUCTION

We examine a family of expansions that represent the density f (t, x, ξ ) which
solves the Boltzmann equation. In particular, we construct different, weighted
Taylor expansions of f̂ (t, x, k), the Fourier transform of f (t, x, ξ ). Each weight
corresponds to a different, finite sequences of the first moments of f (t, x, ξ ).
The first two representation of f̂ (t, x, k) correspond to the Maxwellian and to the
Gaussian. The Taylor expansion with the Maxwellian weight corresponds to the
Grad expansion of f (t, x, ξ ) into a series of Hermite polynomials (see Refs. 10,
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11). The Gaussian weight alone corresponds to Levermore’s “10 moment closure”
(see Refs. 16, 17). The third weight depends on the traditional, 13 moments of
f (t, x, ξ ) and it seems to be new. We point out that the Maxwellian appears in our
expansion coincidentally, without any reference to Boltzmann equation.

This fact seems to be related to the Fourier transform itself and to the condition
of the Galilean invariance imposed on the weighted Taylor expansions.

By continuing with our algorithm, we also construct the next, the 20 moment
weight, that depends on all third order moments of f (t, x, ξ ). As soon as we try
to incorporate the moments of the fourth order, our algorithm becomes irregular.
The source of that irregularity is related to the specific criterion of optimality that,
together with the Galilean invariance, is at the core of our algorithm: We compute
our weights by minimizing the pointwise error term in the Taylor expansions.
This criterion alone does not guarantee that the resulting weights have an inverse
Fourier transform—a necessary condition for self consistency of our scheme. In
order to preserve this property, for all possible choices of the fourth moments,
we are forced to exclude them from the exponent of the weight. Consequently,
for all prescribed, finite sequences of the moments of f (t, x, ξ ) that contain
moments of fourth order and higher, our expansion becomes of a mixed type with
all odd order moments in the exponent of the weight and with the even order
moments entering the coefficients of the power series. We must admit that our
analysis of this phenomenon is less than rigorous. However, we think that there
exists an intriguing connection between the weighted Taylor series, the Chapman-
Enskog expansion (see Refs. 5, 11, 13), the Hamburger moment problem (see
Ref. 21) and the Central Limit Theorem, all studied by the methods of the Fourier
transform.

The paper is divided into 3 sections. In Sec. 1 we describe the construction
of the weighted Taylor expansion based on the finite sequences of moments that,
conceptually we assume to be known. In our formulation of the problem, we owe a
great deal to Levermore’s paper(16) that emphasizes the Galilean invariance of all
potential approximations of the Boltzmann equation (see also Refs. 13, 15, 19).

In Sec. 2 we describe the 13 moment closure scheme that exploits the
13 moment weight of the Taylor expansion. The weights that we describe do
not have an explicit inverse Fourier transform. Thus, it is essential that we have
the Fourier transform of the Boltzmann equation itself. Its derivation and analysis
can be found in Ref. 1 and in Bobylev’s paper.(2) In Appendix C, we also describe
an alternative derivation that goes well with the hard sphere model.

The choice of the closure scheme is somewhat arbitrary. The first choice
can be based on the remainder formula for the finite Taylor expansion. We also
describe the second interpretation of the closure scheme that, attempts to relate the
13 moment expansion to Levermore’s 14 moment approximation of the density
f (t, x, ξ ). We make this choice by having in mind the entropy dissipation inequal-
ity, that is not a natural part of our approximation. However, we would like to
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stress that, in either case we end up with the same evolution equations, computed
by the same algorithm.

As the result of our computations, we modify Grad’s 13 moment equation. The
most pronounce differences appear in the equations which describe the evolution
of the heat fluxes. We obtain different nonlinear terms than those found in Grad’s
equations.

Finally, in Sec. 3 we examine Levermore’s 14 moment density itself. First, we
show that Levermore’s centered density f�[ξ ] is independent of the macroscopic
velocity u of the gas. This is the key compatibility condition that we need in order
to reconcile the 14 moment approximation of the Boltzmann equation with the
Grad 13 moment expansion. Secondly, we demonstrate that the coefficients of the
Godunov potential are described by a system of partial differential equations with
coefficients that are the k derivatives of f̂ � [k]. We argue that those equations
should, in principle, be solvable by the same, weighted Taylor expansion that
modifies the Grad equations. We don’t try to pursue this idea further since its
scope is certainly beyond the horizon of a single paper.

Lastly, we wish to point out that, although we ignore the error terms in the
weighted Taylor expansion and in the Pizzetti formula, both of them have their
finite counterparts that are described in Appendices A and B.

CONVENTIONS AND NOTATION

We freely use the standard multi-index notation. We also use the Einstein’s
summation convention. We have two different symbols for the functions of
t, x, v, ξ or k. The round parentheses indicate that we list all the independent
arguments of f or f̂ . The square parentheses indicate that we list only the variables
that matter in a particular context. Thus, for example, we may write f (t, x, ξ ) or
f [ξ ] depending on the circumstances. Sometimes we skip the variables altogether
and we just write f if there is no danger of confusion.

1. APPROXIMATION OF THE BOLTZMANN DENSITY

We consider a positive density F(t, x, v) that solves the Boltzmann equation
for the gas of hard spheres,

∂ F

∂t
+ v · ∇x F + g · ∇v F = 1

λ
Q[F, F], t > 0, x ∈ E3, v ∈ E3. (1.1)

We wish to construct an approximate solution of Eq. (1.1) that is based on the
finite number of moments of the density F(t, x, v). In particular, we are interested
in the 13 moment approximation of F that could improve Grad’s approximation as
described in Refs. 10, 11. For the macroscopic density ρ and for the macroscopic
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velocity u,

ρ =
∫

E3

dvF[v], ρua =
∫

E3

dvva F[v], (1.2)

we define the centered density f [ξ ] by the formula,

f [ξ ] = F[ξ + u], ξ = v − u. (1.3)

We introduce the stress tensor θab and the heat flux χa ,

ρθab =
∫

E3

dξξaξb f [ξ ], ρχa =
∫

E3

dξξa〈ξ | ξ 〉 f [ξ ], (1.4)

that differ from their traditional counterparts by a factor ρ. If σ stands for the
Cauchy stress, if q is the standard heat flux and if θ is the temperature then,

σab = ρθab, qa = 1

2
ρχa, θ = 1

3

σnn

ρ
≡ p

ρ
. (1.5)

We define the Fourier transform of F[v] by the integral,

F̂[k] =
∫

E3

dve−i〈k|v〉F[v]. (1.6)

Upon the change of variables, v = ξ + u, Eq. (1.6) yields the relation,

F̂[k] = e−i〈k|u〉 f̂ [k], (1.7)

where f̂ [k] stands for the Fourier transform of f [ξ ],

f̂ [k] =
∫

E3

dξe−i〈k|ξ〉 f [ξ ]. (1.8)

The moments of f [ξ ], that describe the macroscopic properties of gas, can be
expressed in terms of the derivatives of f̂ [k] at k = 0,

f̂ [0] = ρ, ∂a f̂ [0] = 0, ∂a∂b f̂ [0] = −ρθab, ∂a	 f̂ [0] = iρχa . (1.9)

As it is discussed in Levermore’s paper,(16) solutions of the Boltzmann equa-
tion, over the whole space, must be invariant under the Galilean group of trans-
formations. That is, for any orthogonal transformation O : E3 → E3 and for any
constant vector u0 the mappings,

F(t, x, v) → F(t, x − tu0, v − u0), F(t, x, v) → F(t,Ox,Ov), (1.10)

must transform any solution of Eq. (1.1) into another solution of the Boltzmann
equation. In terms of the Fourier transform Eq. (1.10) yield two mappings,

F̂(t, x, k) → e−i〈k|u0〉 F̂(t, x − tu0, k), F̂(t, x, k) → F̂(t,Ox,Ok). (1.11)
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In Appendix A we show that given a sufficiently smooth function B[k], any
“nice” function f̂ [k] can be expanded into a formal, weighted Taylor series,

f̂ [k] = e−B[k]

⎡
⎣ f̂ [0] +

∞∑
N=1

∑
|α|=N

Lα f̂ [0]
kα

α!

⎤
⎦ , (1.12)

where,

Lα = Lα1
1 Lα2

2 Lα3
3 , La f̂ [k] = ∂a f̂ [k] + ∂a B[k] f̂ [k]. (1.13)

Assuming that f̂ [k] represents a solution of the Boltzmann equation and
considering B[k] to be a polynomial in k, we impose two conditions on B[k].
First of all, B[Ok] must be a polynomial of the same type as B[k] is. Secondly,
exp (−B[k]) must be an integrable function over E3, if we wish to recover f [ξ ]
through the inverse Fourier transform of f̂ [k]. Comparing above constraints with
the definition of M spaces in Levermore’s paper, we conclude that the first seven
candidates for B[k] are (see Ref. 16, p. 1037, Eq. (4.8)):

1. B[k] = ∑
|α|≤1

Bαkα + W0〈k | k〉, – “5 moment expansion”,

2. B[k] = ∑
|α|≤2

Bαkα, – “10 moment expansion”,

3. B[k] = ∑
|α|≤2

Bαkα + 〈N | k〉〈k | k〉, – “13 moment expansion”,

4. B[k] = ∑
|α|≤3

Bαkα, – “20 moment expansion”,

and
5. B[k] = ∑

|α|≤2
Bαkα + W0〈k | k〉2 – “14 moment expansion”,

6. B[k] = ∑
|α|≤3

Bαkα + W0〈k | k〉2, – “21 moment expansion”,

7. B[k] = ∑
|α|≤4

Bαkα, – “35 moment expansion”.

In order to determine the coefficients of each B[k], we proceed inductively.
We start with “5 moment expansion”. We try to optimize expansion (1.12) by
annihilating as many successive coefficients Lα f̂ [0] as we can. Equations (1.9)
imply that f̂ [0] = ρ so B[0] = 0. Next, we set,

Lα f̂ [0] = ∂α f̂ [0] + ∂α B[0] f̂ [0] = 0. (1.14)

By Eq. (1.9), ∂a f̂ [0] = 0. Thus all Bα’s are zero. We are left with a single coefficient
W0. We impose the last condition,

[
L2

1 + L2
2 + L3

3

]
f̂ [0] = 0. (1.15)



672 Karwowski

Simple computations yield (see the formulae in Appendix A),

	 f̂ [0] + 6W0 f̂ [0] = 0. (1.16)

Since, the Laplacian 	 defines the macroscopic temperature θ according to the
formula

	 f̂ [0] = −ρθaa = −3ρθ, (1.17)

we obtain W0 = 1
2θ . Therefore expansion (1.12) is,

f̂ [k] = exp

(
−1

2
θ〈k | k〉

)⎡
⎣ρ +

∞∑
N=1

∑
|α|=N

Lα f̂ [0]
kα

α!

⎤
⎦ ,

(1.18)

La f̂ [k] = ∂a f̂ [k] + θka f̂ [k],

The inverse Fourier transform of

M̂[k] = ρ exp

(
−1

2
θ〈k | k〉

)
, (1.19)

is the standard Maxwellian,

M[ξ ] = ρ

[2πθ ]
3
2

exp

(
−1

2
θ−1〈ξ | ξ 〉

)
. (1.20)

Consequently, by taking the inverse Fourier transform of expansion (1.18) we
recover Grad’s expansion of f [ξ ] into Hermite polynomials (see Refs. 10, 11).

Next, we consider the 10 moment expansion with the new B[k]. Again we
try to annihilate successive coefficients in expansion (1.12). Conditions f̂ [0] = ρ

and La f̂ [0] = 0 imply that all Bα’s, for |α| ≤ 1 vanish. We add a new condition,
La Lb f̂ [0] = 0. Since

La Lb f̂ [0] = ∂a∂b f̂ [0] + ∂a∂b B[0] f̂ [0], (1.21)

we conclude that ∂a∂b B[0] = θab. Therefore expansion (1.12) yields,

f̂ [k] = exp

(
−1

2
〈θk | k〉

)⎡
⎣ρ +

∞∑
N=3

∑
|α|=N

Lα f̂ [0]
kα

α!

⎤
⎦ ,

(1.22)

La f̂ [k] = ∂a f̂ [k] + θabkb f̂ [k].

By taking the inverse Fourier transform of Eq. (1.22), we recover the expansion
of f [ξ ] with respect to the Gaussian weight. The Gaussian closure was studied
by Levermore in Ref. 16 and Levermore, Morokoff in Ref. 17, as a “10 moment
closure”. Using the full expansion (1.22) one can generate a Grad-like moment
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approximation of the Boltzmann equation, with the Gaussian in place of the
Maxwellian.

We continue our computations with the next B[k],

B[k] =
∑
|α|≤2

Bαkα + 〈N | k〉〈k | k〉. (1.23)

Following the previous pattern, we associate with every polynomial that is multi-
plied by the unknown coefficient Bα , an algebraic condition,

Pα(k1, k2, k3) → Pα(L1, L2, L3) f̂ [0] = 0. (1.24)

Each time we obtain an equation that identifies coefficient Bα in terms of the
derivatives ∂β f̂ [0] that are listed in Eq. (1.9). In particular case of Eq. (1.23), we
have the following sequence of conditions,

1 → f̂ [0] = ρ ⇔ B[0] = 0,

ka → La f̂ [0] = 0 ⇔ ∂a B[0] = 0, (1.25)

kakb → La Lb f̂ [0] = 0 ⇔ ∂a∂b B[0] = θab,

ka〈k | k〉 → La

[
L2

1 + L2
2 + L2

3

]
f̂ [0] = 0 ⇔ ∂a	B[0] = −iχa .

Consequently,

B[k] = 1

2
〈θk | k〉 − i

10
〈χ | k〉〈k | k〉. (1.26)

Therefore,

f̂ [k] = exp

(
−1

2
〈θk | k〉 + i

10
〈χ | k〉〈k | k〉

)⎡
⎣ρ +

∞∑
N=3

∑
|α|=N

Lα f̂ [0]
kα

α!

⎤
⎦ ,

(1.27)

La f̂ [k] = ∂a f̂ [k] +
[
θabkb + i

10
ξa〈k | k〉 − i

5
〈χ | k〉ka

]
f̂ [k].

We notice that expansion (1.27) can formally be inverted, term by term,
using the Fourier transform. However, the oscillatory term in the weight makes an
explicit computations difficult. Still, we wish to know whether the new weight,

ŵ[k] = exp

(
−1

2
〈θk | k〉 + i

10
〈χ | k〉〈k | k〉

)
, (1.28)
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has an inverse Fourier transform, w[ξ ], that is real and positive. Regrettably, this
is not quite the case. We examine the function,

ŵs[k] = exp

(
−1

2
〈θk | k〉 + is〈β | k〉〈k | k〉

)
, β = χ

10
. (1.29)

Its inverse Fourier transform is given by the integral,

ws[ξ ] =
∫

E3

dk

[2π ]3
ei〈k|ξ〉 exp

(
−1

2
〈θk | k〉 + is〈β | k〉〈k | k〉

)
. (1.30)

By the standard properties of the Fourier transform, ws[ξ ] is a solution of the
linear, dispersive, partial differential equation,

∂

∂s
ws[ξ ] = −βa∂a	ws[ξ ], (1.31)

with the Gaussian initial condition,

w0[ξ ] = [det[2πθ ]]−
1
2 exp

(
−1

2
〈θ−1ξ | ξ 〉

)
. (1.32)

Therefore, ws[ξ ] is real for all s and it remains close to the Gaussian for small s.
Consequently w[ξ ] = F−1(ŵ[k]) is real and close to the Gaussian for small χ .
Unfortunately, ws[ξ ] cannot be positive. Trivial expansion of the integral (1.30)
yields,

ws[ξ ] = w0[ξ ] [1 + s P1(ξ ) + · · ·] , (1.33)

where P1(ξ ) is a qubic polynomial in ξ . Thus ws[ξ ] must, eventually become
negative for any s �= 0. In fact, for ξ in R any weight past the Gaussian cannot
be positive by the Marcinkiewicz theorem (see Ref. 18). The problem of finding
an asymptotic behavior of ws[ξ ] as s → ∞ belongs to the theory of oscillatory
integrals (see Ref. 22). The formulae that appear there show that ws[ξ ] picks up
oscillatory terms for large s. Thus any computation based on the approximation,

f̂ [k] ≈ ρ exp

(
−1

2
〈θk | k〉 + i

10
〈χ | k〉〈k | k〉

)
, (1.34)

becomes suspect for large heat fluxes qa .
The “20 moment expansion” generates a legitimate weight that generalizes

our result for “13 moment expansion.” We replace the last Eq. (1.25) by a modified
condition,

kα → Lα f̂ [0] = 0 ⇔ ∂α B[0] = χα,

(1.35)
ρχα = 1

i
∂α f̂ [0] =

∫
E3

dξξα f [ξ ], | α |= 3.
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We obtain a weight that generalizes expansion (1.27),

f̂ [k] = exp

⎛
⎝−1

2
〈θk | k〉 + i

∑
|α|=3

χα

kα

α!

⎞
⎠

⎡
⎣ρ +

∞∑
N=4

∑
|α|=N

Lα f̂ [0]
kα

α!

⎤
⎦ . (1.36)

We notice that, the inclusion of all cubic monomials in B[k] results in an error
term of order O(k4), while expansion (1.27) has an error term of order O(k3), like
the Gaussian expansion.

It is possible to investigate Taylor expansion for the remaining polynomials
B[k]. First, we consider the “14 moment expansion.” We try to extend the scheme
(1.25) by adding the next condition,

〈k | k〉2 → [
L2

1 + L2
2 + L2

3

]2
f̂ [0] = 0 ⇔ W0 = 1

5!
[[trθ ]2 + 2trθ2 − µ],

(1.37)
µ = 	2 f̂ [0] =

∫
E3

dξ 〈ξ | ξ 〉2 f [ξ ].

Unfortunately, there is no guarantee that W0 ≥ 0. Consequently the “14 mo-
ment expansion” corresponds to a weight that may or may not have an inverse
Fourier transform. However, the weighted Taylor expansion remains valid for small
k’s.

It is still a realistic undertaking to study 21 and 35 moment expansions. In
the first case, we recover the same W0 as for the 14 moment expansion. Thus the
resulting weight cannot, in general be Fourier inverted; it remains valid locally, for
small k. There are similar difficulties with 35 moment expansion. The dominant,
quartic monomials behave like W0 and the corresponding expansion fails, in
general, to have a Fourier inverse.

One may ask a question of what happens next, for B’s that contain monomials
of degree larger than 4. We do not know the precise answer since the resulting
formulas for Lα f̂ [k]’s become quite complex. However, one can study a one-
dimensional case with greater precision, under the condition that the weighted
expansion has a formal Fourier inverse. Based on such an analysis, one can write
a hypothetical expansion that has the following form,

f̂ [k] = exp

(
−1

2
θk2 + iN [k]

)⎡
⎣ρ +

N∑
j=2

L2 j
N f̂ [0]

k2 j

(2 j)!
+ RN [k]

⎤
⎦ . (1.38)

N [k] stands for an odd, real polynomial in k,

N [k] = ω3k3 + ω5k5 + ω7k7 + · · · + ω2N+1k2N+1. (1.39)

whose coefficients ω2 j+1 can be computed from the sequence of conditions,

k2 j+1 → L2 j+1
N f̂ [0] = 0, j = 1, 2, . . . N . (1.40)



676 Karwowski

The key future of the computation, like in the three-dimensional case, is the fact
that D f̂ [0] = 0. This condition seems to separate the odd and the even moments
of f [ξ ]. The odd moments enter the formulae for ω2 j+1. The even moments end

up in the coefficients L2 j
N f̂ [0]. Moreover, it is possible to let N → ∞ since the

inductive character of the computations, like in ordinary Taylor expansion, makes
ωn’s and Ln f̂ [0]’s, for n smaller than N, independent of N. In this case, we obtain
the expansion,

f̂ [k] = exp

(
−1

2
θk2 + i[k]

) ⎡
⎣ρ +

∞∑
j=0

L2 j+4 f̂ [0]
k2 j+4

(2 j + 4)!

⎤
⎦ , (1.41)

where the coeffcients ω are still determined by the conditions,

L2 j+1 f̂ [0] = 0, j = 1, 2, 3, . . . ,

[k] =
∞∑

m=1

ω2m+1k2m+1,
(1.42)

providing that,

L f̂ [k] = D f̂ [k] + [θk − i D[k]] f̂ [k]. (1.43)

There exists an intriguing possibility that Eq. (1.41) represents a formal
solution of the Hamburger problem where one attempts to recover the formula for
f [ξ ] ≥ 0 knowing all the moments of f (see Simon’s review Ref. 21). Moreover, the
formula (1.41) can be used to provide intuitive arguments supporting the Central
Limit Theorem.

We could also write a three dimensional analog of Eq. (1.41) by setting,

f̂ [k] = exp

(
−1

2
〈θk | k〉 + i[k]

)
[ρ + ϒ[k]] ,

(1.44)
[k] =

∞∑
N=1

∑
|α|=2N+1

ωαkα, ϒ[k] =
∞∑

N=2

∑
|α|=2N

Lα f̂ [0]
kα

α!
,

where ωα’s would be defined by the conditions,

Lα f̂ [0] = 0, |α| = 2N + 1, N = 1, 2, 3, . . . .

(1.45)
La f̂ [k] = ∂a f̂ [k] + [θabkb − i∂a[k]] f̂ [k].

In order to justify this analogy, we would have to demonstrate that [k] and ϒ[k]
are real (easy). Then, we would have to establish that [k] depends on the odd
moments of f and to show that ϒ[k] contains the moments of the even order
alone. Next, we would have to prove that expansion (1.44) converges. In that case,
as a reward, we could establish that the Hamburger problem in E3, for f ≥ 0,
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is equivalent to a quantitative version of the Chapman–Enskog hypothesis (see
Refs. 4, 5, 11), examined on the Fourier side of the Boltzmann equation.

2. GRAD’S MODIFIED 13 MOMENT CLOSURE

The Fourier transform of the Boltzmann equation has the following form (see
Refs. 1, 2 and Appendix C),

∂ F̂

∂t
+ i

∂

∂xa
∂a F̂ = 1

λ
Q̂[F̂, F̂], ∂a(·) = ∂(·)

∂ka
. (2.1)

We set,

F̂(t, x, k) = e−i〈k|u(t,x)〉 f̂ (t, x, k), (2.2)

and we express Eq. (2.1) in terms of f̂ . Since

Q̂[F̂, F̂] = e−i〈k|u(t,x)〉 Q̂[ f̂ , f̂ ], (2.3)

we obtain,

D f̂

Dt
+ ∂ua

∂xa
f̂ + i

∂

∂xa
∂a f̂ − i

Dua

Dt
ka f̂ + ∂ub

∂xa
kb∂a f̂ = 1

λ
Q̂[ f̂ , f̂ ],

(2.4)
D(·)
Dt

= ∂(·)
∂t

= un
∂(·)
∂xn

.

For the sake of completeness, we must supplement Eq. (2.4) with the side condition
on f̂ ,

∂a f̂ (t, x, 0) = 0. (2.5)

In the previous section we have constructed different expansions of a single
function f̂ that represents a formal solution of the Boltzmann equation. The first
two weights, the Maxwellian and the Gaussian, fit Levermore’s moment closure
hierarchy that is studied on the Fourier side of the Boltzmann equation. The
third weight, that corresponds to 13 moment expansion, does not belong to that
hierarchy since its inverse Fourier transform is not positive. Thus, if we wish to
use the third weight to approximate the solution of the Boltzmann equation, we
must construct a closure scheme for the following F̂∗[k] (see Eq. (1.27)),

F̂∗[k] = e−i〈k|u∗〉 f̂∗[k],

(2.6)
f̂∗[k] = ρ∗ exp

(
−1

2
〈θ∗k | k〉 + i

10
〈χ∗ | k〉〈k | k〉

)
.
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The first possibility is to consider the finite version of expansion (1.27),

f̂ [k] = exp

(
−1

2
〈θk | k〉 + i

10
〈χ | k〉〈k | k〉

)
[� + R3[k]] , (2.7)

with the explicit error term R3[k] described in Appendix A. The principal part of
this expansion depends on 13 monomials kα ,

1, ka, kakb, kaksks, (2.8)

that are in 1:1 correspondence with the macroscopic quantities computed from the
set of conditions,

f̂ [0] = ρ, ∂a f̂ [0] = 0,

(2.9)
∂a∂b f̂ [0] = −ρθab = −σab, ∂a	 f̂ [0] = iρχa = i2qa .

We pursue this duality further, we substitute expansion (2.7) into the Boltzmann
Eq. (2.4) and we apply to the resulting equation the sequence of 13 differential
operators evaluated at k = 0,

1(·)[0], ∂a(·)[0], ∂a∂b(·)[0], ∂a	(·)[0]. (2.10)

Once differentiation (2.10) is finished, we set R3 ≡ 0 and we arrive at the set of
13 equations for the 13 moments of f [ξ ].

The second possibility is to consider Eq. (1.27) as a Taylor expansion of the
Fourier transform of Levermore’s 14 moment density (for µ see Eq. (1.37)),

F̂�[k] ≡ F̂�[k, u∗, ρ∗, θ∗, χ∗, u∗], (2.11)

In the next section, we show that F̂� factors into a product,

F̂�[k] = e−i〈k/u∗〉 f̂�[k], f̂�[k] ≡ f̂�[k, ρ∗, θ∗, χ∗, µ∗], (2.12)

where f̂� is independent of the macroscopic velocity u∗; a property that is also
shared by expansion (1.27). Consequently, we may write,

f̂�[k] = exp

(
−1

2
〈θ∗k | k〉 + i

10
〈χ∗ | k〉〈k | k〉

)⎡
⎣ρ∗ +

∞∑
N=3

∑
|α|=N

Lα f̂�[0]
kα

α!

⎤
⎦,

(2.13)

where all the coefficients Lα f̂�[0] depend on ρ∗, θ∗, χ∗, µ∗ alone. If we knew how
to compute the remaining moments of f�[ξ ] then we could substitute expansion
(2.13) into Levermore’s moment equations and we would recover their Grad-like
approximation. Since we have at our disposal only the weight of the Levermore’s
expansion, we can substitute F̂∗ into his first 13 equation and we can delete the
14th equation that must contain µ∗. As the result of this procedure we end up



Grad’s 13 Moment Equations in a Modified Form 679

pursuing Levermore’s scheme on the Fourier side of the Boltzmann equation, with
the truncated F̂� and without his last equation. The resulting scheme is identical
with the previous one.

In order to implement the closure scheme, we start to differentiate the Boltz-
mann equation with respect to k. First we evaluate Eq. (2.4) at k = 0,

Dρ

Dt
+ ∂ua

∂xa
ρ = 0. (2.14)

Next, we apply a sequence of 12 differential operators ∂s(·), ∂s∂r (·), ∂m	(·), to
Eq. (2.4), we set k = 0 and we obtain,

ρ
Dus

Dt
+ ∂σas

∂xa
= 0,

Dσrs

Dt
+ ∂ua

∂xa
σrs + ∂ur

∂xa
σas + σra

∂us

∂xa
− i

∂

∂xa
∂a∂r∂s f̂ [0]

= −1

λ
∂a∂b Q̂[ f̂ , f̂ ][0],

Dqm

Dt
+ ∂ua

∂xa
qm + ∂um

∂xa
qa + σms

Dus

Dt
+ 1

2

Dum

Dt
σss

+∂us

∂xa
[i−1∂a∂s∂m f̂ [0]] + ∂

∂xa

[
1

2
∂a∂m	 f̂ [0]

]

= 1

λ

1

2i
∂m	Q̂[ f̂ , f̂ ][0]. (2.15)

Our closure scheme implies that, we have to substitute in place of the true
f̂ its approximation f̂∗, that is given by Eq. (2.6). We must also identify the
macroscopic quantities defined through Eq. (2.9) with their approximate, dressed
in stars, macroscopic counterparts. By construction, Eq. (2.9) are consistent with
the formula for f̂∗. Finally, we must identify u with u∗. After all that, we drop the
stars, we write Eq. (2.15) as they stand, and we pretend that the true f̂ is given by
the formula (2.6). Now, we compute,

i−1∂a∂s∂m f̂ [0] = 2

5
[qaδsm + qmδas + qsδam],

1

2
∂a∂m	 f̂ [0] = 3

2
θσam + 1

ρ
σasσsm .

(2.16)

Next, we set

�ab = −∂a∂b Q̂[ f̂ , f̂ ][0], �m = 1

2i
∂m	Q̂[ f̂ , f̂ ][0]. (2.17)
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After standard algebraic manipulations, we arrive at the full set of 13 evolution
equations,

Dρ

Dt
+ ∂ua

∂xa
ρ = 0,

ρ
Dum

Dt
+ ∂σam

∂xa
= 0,

(2.18)

Dσmn

Dt
+ ∂ua

∂xa
σmn + ∂um

∂xa
σan + σma

∂un

∂xa
+ 2

5

[
∂qa

∂xa
δmn + ∂qm

∂xn
+ ∂qn

∂xm

]
= 1

λ
�mn,

Dqm

Dt
+ 7

5

∂ua

∂xa
qm + 7

5

∂um

∂xa
qa + 2

5

∂ua

∂xm
qa + 3

2
σma

∂θ

∂xa
+σab

∂

∂xa

[
σbm

ρ

]
= 1

λ
�m .

Moreover, by taking the trace of the second equation we recover the balance of
energy, �mm = 0,

3

2
ρ

Dθ

Dt
+ Dabσab + ∂qa

∂xa
= 0,

Dab = 1

2

[
∂ua

∂xb
+ ∂ub

∂xa

]
, θ = p

ρ
= 1

3

σaa

ρ
.

(2.19)

We are still left with the task of computing �ab and �m . In Appendix D we
show that the collision operator Q̂[ f̂ , f̂ ][k] can be expanded into a quasi-power
series whose first term is,

Q̂1[ f̂ , f̂ ][k] = 1

π

∫
E3

dw

|w|2

⎡
⎣∑

|α|=2

kα

α!

∂αψ

∂αw
[k, w] − |k|2

3!
	wψ[k, w]

⎤
⎦. (2.20)

It is also true that for any f̂ ,

Q̂[ f̂ , f̂ ][k] = Q̂1[ f̂ , f̂ ][k] + O(k4). (2.21)

Therefore, up to the third order, at k = 0, all derivatives of Q̂ and Q̂1 are the same.
Hence, �ab and �m can be computed from the formula,

Q̂1[ f̂ , f̂ ][k] = 1

2
kmkn Pmn[k] − 1

6
kmkm Pnn[k],

Pmn[k] = 1

π

∫
E3

dw

|w|2
∂

∂wm

∂

∂wn
ψ[k, w],

ψ[k, w] = 	wϕ[k, w], ϕ[k, w] = f̂

[
1

2
k + 1

2
w

]
f̂

[
1

2
k − 1

2
w

]
. (2.22)
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Equation (2.6) implies that,

Pmn[k] = 1

π

∫
E3

dw

|w|2 	w

∂

∂wm

∂

∂wn
exp(−E[k, w]). (2.23)

The exponent E[k, w] stands for the following polynomial,

E[k, w] = 1

4
〈θk | k〉 + 1

4
〈θw | w〉 − i

40
〈χ | k〉 [〈k | k〉

+〈w | w〉] − i

20
〈χ | w〉〈k | w〉. (2.24)

Straightforward differentiation yields,

�ab = Pab[0],

�ab = −∂a∂b Q̂[0] = 1

3
δab�nn − �ab,

�m = 1

2i
∂m	Q̂[0] = 1

i
∂n Pnm[0]. (2.25)

In terms of the integral formulae,

�ab =
2
√

�

π

∫
E3

dw

|w|2 	w
∂

∂wa

∂

∂wb
exp

(
−1

4
〈σw|w〉

)
, (2.26)

�m =
2
√

�

40π

∫
E3

dw

|w|2 	w

∂

∂wm

∂

∂wn
[2〈q | w〉wn +qn〈w | w〉] exp

(
−1

4
〈σw | w〉

)
.

We notice that the last equation is linear in q.
Both integrals (2.26) can be transform into a Galilean invariant form providing

that we carry out the integration using the diagonal form of 〈σw | w〉. Details of
this technique can be found in Levermore’s and Morokoff’s paper, (17) where they
study the 10 moment closure of the general Boltzmann equation. In particular, one
can show that,

� = 2
√

�
[
γ2σ

2 + γ1σ + γ0id
]
,

� =  · q,  = 2
√

�[η2σ
2 + η1σ + η0id].

(2.27)

The functions γ , η depend on the principal invariants of σ alone, namely,

I1 = tr (σ ), I2 = tr (adσ ), I3 = det(σ ). (2.28)

It is possible to compare Eq. (2.18) with 13 moment equations derived by Grad
(see Ref. 10, pp. 366–367, Eqs. (5.17), (5.18)). Grad uses the symbols,

{�, ua, Pab, pab, p, RT, Sa}, (2.29)
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that in our notation correspond to the sequence,

{�, ua, σab, σab − pδab, p, θ, 2qa}. (2.30)

Comparing Grad’s equations with Eqs. (2.18) we conclude that conservation
of mass, momentum and energy is, obviously, identical in both systems. Grad’s
evolution equations for σab’s are also identical with ours, except for � tensor. In
Grad’s work � appears as,

−1

λ
�ab = C

σ̃

m̃
2
√

�
2
√

I1 pab, (2.31)

where C is a numerical constant, m̃ is the mass of the molecule and σ̃ is its diameter
(see Ref. 10, p. 401, A 3.54). �ab in our work is identical with a particular case of
Levermore’s and Morokoff’s expression derived in Ref. [17]. Finally, the evolution
of the heat flux q in Grad’s work is described by the equation,

Dqm

Dt
+ 7

5

∂ua

∂xa
qm + 7

5

∂um

∂xa
+ 2

5

∂ua

∂xm
qa + θ

∂pma

∂xa
+ 7

2
pma

∂θ

∂xa
− pma

�

∂σab

∂xb

+5

2
p

∂θ

∂xm
= 1

λ
�m, (2.32)

where

1

λ
�m = −C1

σ̃

m̃
2
√

�
2
√

I1qm . (2.33)

It is clear that Eq. (2.32) is different than the last equation in (2.18) (see Ref. 3).
We notice that Eq. (2.18) can effectively be derived from the truncated Boltz-

mann equation (2.4) with Q̂1 in place of Q̂. Thus, it is natural to ask what is the
“Boltzmann equation” that corresponds to this procedure. By taking the inverse
Fourier transform of Q̂1 it is not difficult to show that for hard spheres,

∂ f

∂t
+ ξ · ∇x f = 16π

λ
Q1( f, f ), (2.34)

Q1( f, f ) = 1

3!
	ξ

∫
E3

dw|w|3 F[ξ,w] −
∑
|α|=2

1

α!

∂α

∂αξ

∫
E3

dw|w|wα F[ξ,w],

where

F[ξ,w] = f [ξ + w] f [ξ − w]. (2.35)

Consequently, we arrive at Landau-like approximation of the collision kernel that,
in spirit, is similar to Villani’s result (see Ref. 24 for extensive list of references).
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3. LEVERMORE 14 MOMENT DENSITY

In this section we examine Levermore’s 14 moment approximation of the
density F�[v], vεE3 (see Ref. 16). We are interested in a quantified description of
that density that could be reconciled with the 13 moment approximation describe
in Sec. 2. In order to explain our idea, we start with a one-dimensional caricature
of the original problem. We examine one-dimensional density F�[v] that is given
by the formula (see Ref. 14),

F�[v] = e−A[v], vεR,

A[v] = A0 + A1v + A2v
2 + A3v

3 + A4v
4. (3.1)

We wish to identify the unknown coefficients An through the set of conditions for
the prescribed densities ρn ,

�n =
∫

R
dvvne−A[v], n = 0, 1, 2, 3, 4. (3.2)

By introducing a convex Godunov potential (see Refs. 8, 15, 16),

G =
∫

R
dve−A[v], (3.3)

and by computing,

�n = − ∂G

∂ An
, n = 0, 1, 2, 3, 4, (3.4)

one can show that Eq. (3.2) has a unique solution for An’s in terms of �n’s.
By analogy with the three-dimensional problem, we call ρ0 and u = �1/�0 the
“macroscopic density �” and the “macroscopic velocity u”.

The macroscopic velocity u defines the centered density,

f�[ξ ] = F�[ξ + u], (3.5)

in terms of the peculiar velocity ξ = v − u. The new density f�[ξ ] defines a new
sequence of centered moments σ n that are given by the integrals,

σn =
∫

R
dξξ n f�[ξ ], n = 0, 1, 2, 3, 4. (3.6)

Comparing �n’s with σ n’s we see that σ1 = 0, and

�0 = σ0,

�1 = σ0u,

�2 = σ0u2 + σ2,

�3 = σ0u3 + 3uσ2 + σ3,

�4 = σ0u4 + 6u2σ2 + 4uσ3 + σ4.

(3.7)
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Hence, the mapping defined by Eq. (3.7),

[σ0, u, σ2, σ3, σ4] → [�0, �1, �2, �3, �4], (3.8)

is 1:1 and “onto” with an inverse that can explicitly be computed.
We wish to show that f�[ξ ] is independent of u. First of all, we notice that,

f�[ξ ] = F�[ξ + u] = e−B[ξ ],

B[ξ ] = B0 + B1ξ + B2ξ
2 + B3ξ

3 + B4ξ
4, (3.9)

where,

B0 = A0 + A1u + A2u2 + A3u3 + A4u4,

B1 = A1 + 2A2u + 3A3u2 + 4A4u3,

B2 = A2 + 3A3u + 6A4u2,

B3 = A3 + 4A4u,

B4 = A4.

(3.10)

Thus, for all u,

B = L[u]A, Det L[u] = 1. (3.11)

Now, we define a new Godunov potential,

G∗ =
∫

R
dξe−B[ξ ] =

∫
R

dξ f�[ξ ], (3.12)

where, in view of Eq. (3.11), B0, B1, B2, B3, B4 are independent variables. As
before, we obtain a sequence of equations that is valid for all u’s,

σ0 = ∂G∗

∂ B0
, σ1 = 0 = −∂G∗

∂ B1
, σn = −∂G∗

∂ Bn
, n = 2, 3, 4. (3.13)

Next, in Eq. (3.4) we set u = 0 or equivalently �1 = 0,

�0 = ∂G

∂ A0
, 0 = − ∂G

∂ A1
, �n = − ∂G

∂ An
, n = 2, 3, 4. (3.14)

But for u = 0, Eq. (3.7) imply that �n = σn for all n. Consequently, Eq. (3.13) are
identical with Eq. (3.14) except for the name of variables that appear in G and G

∗
.

By existence and uniqueness of An’s we conclude that for all values of u and n,

Bn = An[�0, 0, �2, �3, �4] = An[σ0, 0, σ2, σ3, σ4]. (3.15)
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Inverting Eq. (3.10) we see that An’s are prescribed polynomials in u, with
the coefficients that depend on σ 0, σ 2, σ 3, σ 4 alone,

A0 = B0 − B1u + B2u2 − B3u3 + B4u4,

A1 = B1 − 2B2u + 3B3u2 − B4u3,

A2 = B2 − 3B3u − 6B4u2,

A3 = B3 − 4B4u,

A4 = B4.

(3.16)

Therefore, the problem of finding An’s from Eq. (3.2) can be reduced to the problem
of finding B0, B1, B2, B3, B4 from the following set of equations,

f�[ξ ] = e−B[ξ ], B[ξ ] = B0 + B1ξ + B2ξ
2 + B3ξ

3 + B4ξ
4, (3.17)

where,

� =
∫

R
dξ f�[ξ ], 0 =

∫
R

dξξ f�[ξ ],

�θ =
∫

R
dξξ 2 f�[ξ ], �χ =

∫
R

dξξ 3 f�[ξ ], �µ =
∫

R
dξξ 4 f�[ξ ].

(3.18)

The conventional symbols θ , χ , can be identified with the “temperature” and with
the “heat flux” per unit density, while the moment µ must remain nameless as it
has no macroscopic analogue in the classical gas dynamics.

The arguments presented above can be applied, almost verbatim, to all den-
sities that appear in Levermore’s work [16]. Therefore the entropies,

h� =
∫

E3

dv [F�[v] ln(F�[v]) − F�[v]] =
∫

E3

dξ [ f�[ξ ] ln( f�[ξ ]) − f�[ξ ]] ,

(3.19)
associated with those densities are independent of uεE3 (see Ref. 19). Hence, the
principle of maximum entropy that appears in Ref. 16 yields the entropy density
that must be independent of the macroscopic velocity u.

Next, we consider Levermore’s 14 moment density F�[v],

F�[v] = e−A[v], vεE3,

A[v] = B∗
0 + 〈L∗|v〉 + 1

2
〈M∗v | v〉 + 〈N ∗ | v〉〈v | v〉 + W ∗

0 〈v | v〉2. (3.20)

By repeating the arguments for one-dimensional case, we reduce the problem of
finding F�[v] to the problem of finding the centered density f�[ξ ], such that
F�[v] = f�[v − u], where u is the macroscopic velocity of the fluid. The new
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density has the form,

f�[ξ ] = e−B[ξ ], ξεE3,

B[ξ ] = B0 + 〈L | ξ 〉 + 1

2
〈Mξ | ξ 〉 + 〈N | ξ 〉〈ξ | ξ 〉 + W0〈ξ | ξ 〉2. (3.21)

The 14 unknown functions, B0, La, Mab, Na, W0 must be found from 14 conditions
on the moments of f�[ξ ],

� =
∫

E3

dξ f�[ξ ], 0 =
∫

E3

dξξa f�[ξ ], �θab =
∫

E3

dξξaξb f�[ξ ],

�χa =
∫

E3

dξξa〈ξ | ξ 〉 f�[ξ ], �µ =
∫

E3

dξ 〈ξ | ξ 〉2 f�[ξ ].
(3.22)

As in Sec. 1, we study the Fourier transform of f�[ξ ],

f̂�[k] =
∫

E3

dξe−i〈k|ξ〉 f�[ξ ], (3.23)

that corresponds to f̂�[k, ρ∗, θ∗, χ∗, µ∗] from Eq. (2.12). The standard formula,

i |α|+|β|∂α[kβ f̂ [k]] = F[ξα∂β f [ξ ]], (3.24)

together with Eqs. (3.22) implies that

f̂�[0] = �, ∂a f̂�[0] = 0, ∂a∂b f̂�[0] = −�θab,

∂a	 f̂�[0] = i�χa, 	2 f̂�[0] = �µ. (3.25)

Since f�[ξ ] = e−B[ξ ],

∂a f�[ξ ] + ∂a B[ξ ] f�[ξ ] = 0. (3.26)

Using Eq. (3.24), we compute the Fourier transform of the last equation. We obtain
a system of 3 partial differential equations with 14 “initial conditions” (3.25),

i4W0∂a	 f̂�[k] + 2Ns∂s∂a f̂�[k] = ika f̂�[k] + La f̂�[k] + i Mas∂s f̂�[k]

− Na	 f̂�[k]. (3.27)

Now, we differentiate Eq. (3.23): If π stands for any independent moment
�, θab, χa, µ then,

− ∂

∂π
f̂�[k] =

∫
E3

dξe−i〈k|ξ〉e−B[ξ ]

[
∂ B0

∂π
+ ∂La

∂π
ξa + 1

2

∂ Mab

∂π
ξaξb

+∂ Na

∂π
ξaξbξb + ∂W0

∂π
ξaξaξbξb

]
. (3.28)
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Equation (3.28) yield a system of 11 equations for the 14 unknown functions,

B0, La, Mab, Na, W0,

− ∂

∂π
f̂�[k] = f̂�[k]

∂ B0

∂π
+ i∂a f̂�[k]

∂La

∂π

−1

2
∂a∂b f̂�[k]

∂ Mab

∂π
− i∂a	 f̂�[k]

∂ Na

∂π
+ 	2 f̂�[k]

∂W0

∂π
. (3.29)

Furthermore, Eq. (3.29) must be supplied with its own continuity conditions.
Namely, by the uniqueness of Levermore’s construction, the moments computed
for the Gaussian,

f�[ξ ] = �

[2π det θ ]1/2
exp

(
−1

2
〈θ−1ξ | ξ 〉

)
, (3.30)

and substituted into Eq. (3.22) must yield the Gaussian itself. Therefore, when

� = �, θab = θab, χa = 0, µ = 2θabθab + θaaθbb, (3.31)

we must have,

e−B0 = �

[2π det θ ]1/2
, La = 0, Mab = (θ−1)ab, Na = 0, W0 = 0. (3.32)

Consequently, we have 14 equations for the 14 unknown functions that appear in
Eq. (3.21). We can close our derivation by writing the formula for the entropy,

S� = −
∫

E3

dvF�[v] ln F�[v] = −
∫

E3

dξ f�[ξ ] ln f�[ξ ] =
∫

E3

dξe−B[ξ ] B[ξ ],

S�(ρ, θ, χ, µ) = �

[
B0 + 1

2
Mabθab + Naχa + W0µ

]
. (3.33)

Any direct attempt to solve Eqs. (3.27), (3.29) by hand seems to be imprac-
tical. However, we may try to exploit Grad’s expansion (1.27) to represent f̂�[k]
as a power series in k. In this case, we gain an insight into the compatibility
conditions that emerge while computing coefficients of the Godunow potential.
Unfortunately, it is impossible to test such an idea within confines of a single
paper.

Nevertheless, it is possible to gain some insight into Levermore’s problem by
studying a one-dimensional density (see Ref. 13),

f�[ξ ] = exp[−B0 − B2ξ
2 − B4ξ

4], (3.34)

where the functions B0, B2, B4 are determined by the three conditions,

� =
∫

R
dξ f�[ξ ], �θ =

∫
R

dξξ 2 f�[ξ ], �µ =
∫

R
dξξ 4 f�[ξ ]. (3.35)
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It is not difficult to show that one-dimensional caricature of Eqs. (3.27), (3.29)
together with the analog of the “initial conditions” (3.25), (3.32) yields,

f [ξ ] = �
2
√

2πθ
exp(−q[η]) exp

(
− 1

2θ
[1 − 4ηb[η]]ξ 2 − b[η]ξ 4

)
, (3.36)

where η = µθ−2 is an independent variable and

q[η] = ηb[η] +
∫ η

3
dη̄b[η̄]. (3.37)

The function b[η] is described by the first order differential equation,

db

dη
= 8[η − 1]b2

[3 − η + 4η[1 − η]b]
, lim

η→3
b[η] = 0, (3.38)

whose solution is not amenable to a simple analysis unless b[η] ≡ 0. However,
as Professor H. Gingold pointed out, Eq. (3.38) does have other solutions; all of
them violate the key condition of the Levermore scheme,

b[η] > 0 for all η > 0 unless η = 3. (3.39)

Epilogue.
For the sake of argument, let us assume that Hamburger formula (1.44) holds

true. Then we must agree that f̂ [k] does not depend on the macroscopic velocity
of the gas u (t, x). Therefore, we must accept that u does not appear in the collision
operator Q̂[ f̂ , f̂ ] and that u appears on the left hand side of the Boltzmann
equation alone. Moreover, the entropy integral,

S = −
∫

E3

dξ f ln f,

cannot depend on u either. Therefore S is Galilean invariant in the sense of
extended thermodynamics (see Ref. 19). Above argument will remain true for any
weighted Taylor expansion that is convergent.

APPENDIX A. WEIGHTED TAYLOR FORMULA ON Rn

We consider n differential operators L j acting on a complex function φ,

L jφ(k) = ∂ jφ(k) + a j (k)φ(k), 1 ≤ j ≤ n, k ∈ Rn. (A.1)

We must assume that operators L j commute, that is,

L j Lk − Lk L j = [∂ j ak − ∂ka j ]I d = 0. (A.2)
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Consequently, there exists a function A(k) such that a j (k) = ∂ j A(k). For a given
function φ, we set

f (k) = eA(k)φ(k), k ∈ Rn, (A.3)

and we check that for any multi index α = (α1, . . . , αn),

∂α f (k) = eA(k)Lαφ(k), Lα = Lα1
1 Lα2

2 . . . Lαn
n . (A.4)

Next, we write down the Taylor formula for f in C N+1(Rn),

f (x + k) =
∑

|α|≤N

∂α f (x)
kα

α!
+

∑
|α|=N+1

kα

α!

∫ 1

0
ds[N + 1][1 − s]N ∂α f (x + sk).

(A.5)
We substitute Eqs. (A.3), (A.4) into Eq. (A.5). Then the modified Taylor expansion
for the function φ emerges as the formula,

φ(x + k) = eA(x)−A(x+k)

⎡
⎣ ∑

|α|≤N

Lαφ(x)
kα

α!
+ RN (x, k)

⎤
⎦ , (A.6)

where,

RN (x, k) = e−A(x)
∑

|α|=N+1

yα

α!

∫ 1

0
ds[N + 1][1 − s]N eA(x+sk) Lαφ(x + sk).

(A.7)
For x = 0 and A(0) = 0, we recover the McLaurin expansion that we use

throughout the paper,

φ(k) = e−A(k)

⎡
⎣ ∑

|α|≤N

Lαφ(0)
kα

α!
+ RN (k)

⎤
⎦

RN (k) =
∑

|α|=N+1

kα

α!

∫ 1

0
ds[N + 1][1 − s]N eA(sk) Lαφ(sk).

(A.8)

The formulae for the derivatives of φ, up to the third order, that are necessary
to compute the 13 and the 20 moment approximation of the density f̂ (k) are as
follows,

Lαφ = ∂aφ + ∂a A · φ,

La Lbφ = ∂a∂bφ + ∂a A · ∂bφ + ∂b A · ∂aφ + [∂a∂b A + ∂a A · ∂b�] · φ,

La Lb Lcφ = ∂a∂b∂cφ + ∂a A · ∂b∂cφ + ∂b A · ∂a∂cφ + ∂c A · ∂a∂bφ

+ [∂a∂b A + ∂a A · ∂b A] · ∂cφ + [∂a∂c A + ∂a A · ∂c A] · ∂b

+ [∂c∂b A + ∂c A · ∂b A] · ∂aφ + [∂a∂b∂c A + ∂a∂c A · ∂b A
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+ ∂a∂b A · ∂c A + ∂b∂c A · ∂a A + ∂a A · ∂b A · ∂c A] · φ. (A.9)

In Eq. (A.9), for the sake of brevity, we dropped the argument of φ and A.
We would like to add that the formula for LaLbLcLnφ contains over 50 terms.

Therefore it is of great computational importance that ∂n A(0) = 0. This is indeed,
the case when we study the moments of the Boltzmann equation in terms of f̂ [k]
and not F̂[k].

APPENDIX B. PIZZETTI’S FORMULA

Inverse Fourier transform applied to f [ξ ] yields the formula,

f [ξ + s |p| n] =
∫

E3

dk

[2π ]3
exp[ik · ξ ] exp[is |p|k · n] f̂ [k]. (B.1)

We take the spherical average of both sides of Eq. (2.1) and we obtain,

〈 f [ξ + s|p|n]〉S2 =
∫

S2

dn

4π
f [ξ + s|p|n]

=
∫

E3

dk

[2π ]3
exp[ik · ξ ]

sin[s|p||k|]
s|p||k| f̂ [k]. (B.2)

A standard Taylor expansion implies that,

sin[|p||k|]
|p||k| =

M∑
m=0

|p|2m

[2m + 1]!

[−|k|2]m +

|p|2M+2

[2M + 2]!

∫ 1

0
ds[1 − s]2M+2[−|k|2]M+1 cos[s|p||k|]. (B.3)

We substitute the last identity into Eq. (B.2). The properties of the Fourier transform
yield,

〈 f [ξ + |p|n]〉S2 =
M∑

m=0

|p|2m

[2m + 1]!
	m

ξ f [ξ ]

+ |p|2M+2

[2M + 2]!

∫ 1

0
ds[1 − s]2M+2	M+1

ξ F[ξ, s|p|],

F[ξ, s|p|] =
∫

E3

dk

[2π ]3
exp[ik · ξ ] cos[s|p||k|] f̂ [k]. (B.4)

Equation (B.2) implies that,

d

ds
[s〈 f [ξ + s|p|n]〉S2 ] = F[ξ, s|p|]. (B.5)
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Consequently, after few simple manipulations, we arrive at the finite version of
the Pizzetti’s formula,

〈 f [ξ + |p|n]〉S2 =
M∑

m=0

|p|2m

[2m + 1]!
	m

ξ f [ξ ] + OM [ξ, |p|],

OM [ξ, |p|] = |p|2M+2

[2M+1]!

∫ 1

0
ds s[1 − s]2M+2〈	M+1

ξ f [ξ + s|p|n]〉S2 .

(B.6)

In this paper we use Zalcman’s version of the identity (B.6) with M = ∞ that
appears in Ref. 25.

Equations (C.12), (B.2) yield an easy proof of the fact that Laplacian com-
mutes with the operation of taking the spherical average. We can also recover the
Euler-Poisson-Darboux’s equation, that appears while studying the wave equation.

APPENDIX C. FOURIER TRANSFORM OF THE BOLTZMANN

EQUATION

We consider a gas of rigid spheres that occupies a region Dx in E3. The
evolution of the gas is described by the Boltzmann equation for the unknown
density F(t, x, v) (see Ref. 4),

∂ F

∂t
+ v · ∇x F + g · ∇v F = 1

λ
Q[F, F], t > 0, x ∈ Dx , v ∈ E3, (C.1)

with the collision operator Q[F, F] given by the integral,

Q[F, F][v] = 1

4

∫
E3

du|u|
∫

S3

dn
[
F

[
v1

∗
]
F[v1] − F[v∗]F[v]

]
. (C.2)

The pair (v1
∗, v

1) describes the velocities of two spheres before their collision and
the pair (v∗, v) represents their velocities thereafter. Since the collisions are elastic,
both pairs are related by the formulas,

v1
∗ = v + 1

2
u + 1

2
|u|n, v1 = v − 1

2
u − 1

2
|u|n, u = v − v∗, (C.3)

the unit vector n being parallel to u1 = v1 − v1
∗ . The integration with respect to n,

relative to the ordinary surface measure dn, extends to the whole unit sphere S2.
We introduce the Fourier transform of F with respect to v and we write the

transformation’s inverse,

F̂[k] =
∫

E3

dve−i〈k|v〉 F[v], F[v] =
∫

E3

dk

[2π ]3
ei〈k|v〉 F̂[k]. (C.4)

We also modify the collision operator Q by multiplying its integrand by e−ε|u|,

Qε[F, F][ξ ] = 1

4

∫
E3

due−ε|u||u|
∫

S2

dn
[
F

[
v1

∗
]
F[v1] − F[v∗]F[v]

]
. (C.5)
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Next, we introduce the spherical change of variables,

u = mw, du = w2dwdm, m ∈ S2. (C.6)

Upon this change, the collision operator Qε becomes an ordinary integral of a
double spherical average over S2 × S2,

Qε[F, F][v] = 1

4

∫ ∞

0
dwe−ε|w||w|3

∫
S2×S2

dn dm
[
F

[
v1

∗
]
F[v1] − F[v∗]F[v]

]
.

(C.7)
Now, we substitute the integral for the inverse Fourier transform of F̂ into the
formula for Qε. Using the properties of the Fourier transform and the formula

∫
S2

dn ei〈q|n〉 = 4π
sin(|q|)

|q| , (C.8)

we obtain that,

Qε[F, F][v] =
∫

E3

dk

[2π ]3
ei〈k|v〉 Q̂ε[F̂, F̂][k]. (C.9)

The new collision operator Q̂ε[F̂, F̂] has the following form,

Q̂ε[F̂, F̂][k] = 1

π

∫
E3

dz F̂

[
1

2
k + 1

2
z

]
F̂

[
1

2
k − 1

2
z

]
	z Sε(k, z). (C.10)

The kernel Sε(k, z) is given by the Laplace integral,

Sε(k, z) =
∫ ∞

0
dw e−εw

[
1

2

[
sin(|k + z | w)

|k + z| + sin(|k − z|w)

|k − z|
]

− sin(|k|w) sin(|z|w)

|k||z|w
]
.

(C.11)

The Laplace operator 	z appears in Q̂ε as the result of the key identity for the
Helmholtz equation in E3, applied to the spherical averages that emerge while
computing Qε[F, F] in terms of F̂ ,

h(z) = − 1

A2
	zh(z), h(z) = sin(A|z − c|)

A|z − c| , z ∈ E3. (C.12)

Although the kernel Sε (k, z) makes no sense without the factor e−εw, the kernel
Sε (k, z) can explicitly be evaluated,

Sε(k, z) = 1

2

[
1

|k + z|2 + ε2
+ 1

|k − z|2 + ε2

]

−1

2

[〈
1

|k + z|2 + ε2

〉
S2

+
〈

1

|k − z|2 + ε2

〉
S2

]
. (C.13)
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The symbol 〈A(x)〉S2 stands for the normalized, spherical average of a function
A(x) over the unit sphere,

〈A(x)〉S2 = 1

4π

∫
S2

dn A(|x |n). (C.14)

Consequently, integrating formula (C.10) by parts and letting ε go to 0, we arrive
at the sequence of relations, that yields the Fourier transform of Q,

Q[F, F][v] = lim
ε→0

Qε[F, F][v]

=
∫

E3

dk

2π3
ei〈k|v〉 lim

ε→0
Q̂ε[F̂, F̂][k] =

∫
E3

dk

2π3
ei〈k|v〉 Q̂[F̂, F̂][k].

(C.15)

It is easy to see that, the new collision operator Q̂ is given by the integral,

Q̂[F̂, F̂][k] = 1

π

∫
E3

dzS(k, z)�[k, z],

�[k, z] = 	z�[k, z], �[k, z] = F̂

[
1

2
k + 1

2
z

]
F̂

[
1

2
k − 1

2
z

]
,

lim
ε→0

Sε(k, z) = S(k, z) = 1

2

[
1

|k + z|2 + 1

|k − z|2
]

−1

2

[〈
1

|k + z|2
〉

S2

+
〈

1

|k − z|2
〉

S2

]
. (C.16)

Therefore, the Fourier transform of the Boltzmann equation has the following
form,

∂ F̂

∂t
+ i∇x · ∇k F̂ + ig · k F̂ = 1

λ
Q̂[F̂, F̂]. (C.17)

The original Boltzmann equation is supplied with the standard boundary
condition (see Ref. 4): If e is the inner, unit normal at x ∈ ∂ Dx then for all v such
that 〈v|e〉 > 0,

〈e|v〉F[v] +
∫

〈e|v∗〉<0
dv∗ R[v∗|v]〈e|v∗〉F[v∗] = 0. (C.18)

The kernel R[v∗|v] is positive and its integral is equal to 1, that is,
∫

〈e|v〉>0
dvR[v∗|v] = 1. (C.19)
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To compute the Fourier transform of the boundary condition (C.18), we
introduce the Heaviside step function,

H (s) =
{

1 if s > 0,

0 if s ≤ 0,
(C.20)

and we replace Eq. (C.18) by its modified variant, that is valid for all v’s,

H (〈e|v〉)〈e|v〉F[v] +
∫

E3

dv∗ B[v∗|v]〈e|v∗〉F |v∗| = 0,

B[v∗|v] = H (−〈e|v∗〉)R[v∗|v]H (〈e|v〉).
(C.21)

It is not difficult to compute the Fourier transform of Eq. (C.21) in the sense of
distributions. Routine computations yield,∫

E3

dp Ĥ (p)〈e|∇k F̂[k − p]〉 +
∫

E3

dp 〈e|∇k F̂[p]〉B̂[−p|k] = 0,

(C.22)

B̂[a∗|b] =
∫

E3×E3

dv∗dv e−i〈a∗|v∗〉e−i〈b|v〉 B[v∗|v].

The tempered distribution Ĥ is defined by its action on a test function φ by the
formula,
∫

E3

dpĤ (p)φ[p] = [2π ]−3

[
1

2
φ[0] − i

2π

∫ ∞

0
ds

φ[s, 0, 0] − φ[−s, 0, 0]

s

]
,

(C.23)

providing that at x ∈ ∂ Dx we choose a local, orthonormal system of coordinates
such that v = v1e + v2e2 + v3e3. We notice that Eqs. (C.17), (C.22) define the
boundary value problem for the Boltzmann equation in terms of F̂(t, x, k) alone.

The formula for the Fourier transform of the Boltzmann equations that can be
found in Refs. 1, 24 is semi-explicit. It contains a distributional Fourier transform
of the collision kernel B that still has to be evaluated. In E3, this task can be
completed by computing the integral,

〈T |φ〉 =
∫

E3

dξ

∫
E3

dw|ξ |γ e−i〈ξ |w〉φ[w], 0 < γ ≤ 1. (C.24)

In order to do so, we introduce the factor e−ε|ξ | and we pass with ξ to spherical
coordinates,

〈Tε|φ〉 =
∫

E3

dw

∫
E3

dξe−ε|ξ ||ξ |γ e−i〈ξ |w〉φ[w]

=
∫

E3

dw

∫ ∞

0
d|ξ |e−ε|ξ ||ξ |γ+24π

sin[|ξ ||w|]
|ξ ||w| φ[w].
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Next, using identity (C.12), we write,

〈Tε|φ〉 = −4π

∫
E3

dw
1

|w|	ωφ[w]
∫ ∞

0
d|ξ |e−ε|ξ ||ξ |γ−1 sin[|ξ ||w|.] (C.25)

The last integral can explicitly be computed,∫ ∞

0
dx e−εx xγ−1 sin[x |w|] = �[γ ]

[ε2 + |w|2]
γ

2

sin

[
γ arctan

[ |w|
ε

]]
. (C.26)

Hence, by taking ε → 0 we conclude that,

〈T |φ〉 = −4π�[γ ] sin
[π

2
γ
] ∫

E3

dw
1

|w|1+γ
	wφ[w]. (C.27)

APPENDIX D. INVARIANTS AND EXPANSION OF THE COLLISION

OPERATOR

The analogue of the collision invariants for the collision operator Q is the set
of relations,

Q̂[F̂, F̂][0] = 0, ∇k Q̂[F̂, F̂][0] = 0, 	k Q̂[F̂, F̂][0] = 0. (D.1)

A direct differentiation under the sign of integral (C.16) produces apparent singu-
larity of S(k, z) that is not locally integrable in E3. We can, however, change the
form of Q̂ to make such a differentiation possible. In order to do so, we apply the
shifts by +k, −k to the first two terms in the integral (C.16),∫

E3

dz
1

2

[
1

|k + z|2 + 1

|k − z|2
]

�[k, z]

=
∫

E3

dw

|w|2
1

2
[�[k, w − k] + �[k, w + k]] . (D.2)

Then, in the remaining two terms we combine the integral identity,∫
E3

dz〈A[z]〉S2 B[z] =
∫

E3

dz A[z]〈B|z|〉S2 , (D.3)

with the explicit formula for the two spherical averages that appear in S(k, z),〈
1

|k ± z|2
〉

S2

= 1

4π

∫
s2

dn
1

||k|n ± z|2 . (D.4)

Shifting the resulting integrands again, we arrive at the expression,∫
E3

dz
1

2

[〈
1

|k + z|2
〉

S2

+
〈

1

|k − z|2
〉

S2

]
�[k, z]

=
∫

E3

dw

|w|2
∫

S2

dn

4π

1

2
[�[k, w − |k|n] + �[k, w + |k|n]] . (D.5)
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Integrals (D.2) and (D.5) yield an alternative form of Q̂,

Q̂[F̂, F̂][k] = 1

π

∫
E3

dw

|w|2
1

2
[�[k, w − k] + �[k, w + k]]

− 1

π

∫
E3

dw

|w|2
∫

S2

dn

4π

1

2
[�[k, w − |k|n] + �[k, w + |k|n]] . (D.6)

In Eq. (D.6) the first integrand can be expanded into an ordinary Taylor series,

1

2
[�[k, w − k] + �[k, w + k]] = �[k, w] +

∞∑
N=1

∑
|α|=2N

kα

α!

∂α�

∂αw
[k, w]. (D.7)

The second integrand can be expanded similarly, using Pizzetti’s formula that is
described in Appendix B,

1

4π

∫

E3

dn G[w + |k|n] = G[w] +
∞∑

N=1

|k|2N

[2N + 1]!
	N

w G[w]. (D.8)

Consequently, ∫
S2

dn

4π

1

2
[�[k, w − |k|n] + �[k, w + |k|n]]

= �[k, w] +
∞∑

N=1

|k|2N

[2N + 1]!
	N

w�[k, w]. (D.9)

Expansions (D.7), (D.9) yield a series expansion of Q̂,

Q̂[F̂, F̂][k] = 1

π

∫
E3

dw

|w|2
∞∑

N=1

⎡
⎣ ∑

|α|=2N

kα

a!

∂α�

∂αw
[k, w] − |k|2N

[2N + 1]!
	N

w�[k, w]

⎤
⎦

=
∞∑

N=1

1

π

∫
E3

dw

|w|2

⎡
⎣ ∑

|α|=2N

kα

a!

∂α�

∂αw
[k, w] − |k|2N

[2N + 1]!
	N

w�[k, w]

⎤
⎦.

(D.10)

Equation (D.10) contains monomials of even order alone. Hence, it is obvious that
the first two conditions (D.1) are trivially true. A simple differentiation of the first
term in Eq. (D.10) yields the third condition (D.1).

For the future reference, we would like to point out that the collision invariants
of Q̂ are independent of the nature and the origin of the function � [k, w]. In other
words, conditions (D.1) do not depend on the fact that,

�[k, w] = 	w�[k, w], �[k, w] = F̂

[
1

2
k + 1

2
w

]
F̂

[
1

2
k − 1

2
w

]
. (D.11)
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Thus, any approximation of F̂ substituted into Boltzmann equation (C.17) will
preserve the structure of the macroscopic balance laws, that are the well known
consequence of the conditions (D.1).
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